笔趣阁书屋手机小说首页小说搜索

返回《万能数据》

笔趣阁书屋(00kshu.cc)

首页 >> 万能数据 () >> 第三百四十八章 彼得尔
亲爱的书友,您现在访问的是转码页面,会导致更新不及时及无法正常下载,请访问真实地址:http://m.00kshu.cc/106910/

第三百四十八章 彼得尔(1/2)

348章

灵感,总是来的这么措不及防!

程诺嘴角微微一勾,将书页翻回原本那一页。

既然crand 假设的证明过程如此复杂,那么,自己就挑战一下,看看是否能够用更加简便的数学语言证明bertrand 假设吧。

顺便,来验证一下,这一年的深入钻研,自己的能力究竟到了何种地步。

bertrand 假设的简单证明方法。

光是这个论文题目,就足以被称得上是一区水平的论文。当然,前提是程诺真的能够探索出来那条简单的解法。

就如程诺之前所假设过的。数学界每一个猜想或者假设的证明过程都是由起点走到终点的过程,有的路线曲折,有的路线笔直。

而或许,切比雪夫发现的是那条比较曲折的路线,而程诺,则需要在前人的基础上,开辟出一条更加简捷的道路。

但这却比单独证明bertrand 假设要简单。

毕竟是站在巨人的肩膀上看待问题,有了切比雪夫这位“开荒者”提出的证明方案,程诺或多或少的也能从中汲取到什么,并进行独到的理解。

想到就做!

程诺不是那么犹豫不决的人。反正时间充裕,容得程诺在发现“此路不通”后,重新寻找另一个论文方向。

想要提出更加简便的方案,首先要把前人提出的证明思路吃透。

他没有火急火燎的直接开始自己的钻研,而是低下头,从头到尾的阅读书中关bertrand 假设的那十几页内容。

两个小时后,程诺合上书。

闭着眼回味了几中掏出一摞空白的草稿纸,拿起桌面上的黑色碳素笔,聚精会神的开始了自己的推演:

想要证明bertrand 假设,就必须证明几个辅助命题。

引理一:【引理 1:设 n 为一自然数, p 为一素数,则能整除 n!的 p 的最高幂次为: s =Σi≥1floor(n/pi)(式中 floor(x)为不大于 x 的最大整数)】

这里,需要将从 1 到 n 的所有(n 个)自然数排列在一条直线上,在每个数字上叠放一列 si 个记号,显然记号的总数是 s。

关系式 s =Σ1≤i≤n si 表示的是先计算各列的记号数(即 si)再求和,由此得到的关系,便是引理1。

引理二:【设 n 为自然数, p 为素数,则np≤n p a; 4n】

用数学归纳法。 n = 1 和 n = 2 时引理显然成立。假设引理对 n a; 2),我们来证明 n = n 的情形。

如果 n 为偶数,则np≤n p =np≤n-1 p,引理显然成立。

如果 n 为奇数,设 n = 2p;lt; p ≤ 2!( 1)!/ 1 中出现两次,因而(2 1 / 2 = 4m.

如此,便能……

程诺思路顺畅,几乎没费多大功夫,便用自己的方法将这两个辅助命题证明出来。

当然,这不过是才走完第一步而已。

按照切比雪夫的思路,后面还需要通过这两个定理引入到bertrand 假设的证明步骤中去。

切比雪夫用的方法是硬凑,没错,就是硬凑!

通过公式间的不断转换,将bertrand 假设的成立的某一个,或者某几个充要条件,转换为引理一或者引理二的形式,在进行化简整合求解。

当然,程诺肯定不能这么做。

因为用这种求证方案的话,别说是程诺,就算是让希尔伯特来,恐怕证明步骤也不会比切比雪夫简单多少。因此,必须要转换思路。

但是究竟怎么一个转换法……

呃……程诺还没想好。

眼看日头西斜,又到了吃完饭的时间,程诺一边脑海中思索,一边漫步走向食堂。

…………

于此同时,远在大洋彼岸的米国。

《inventioneae》杂志的总部,就设在米国的洛杉矶。

作为数学界内顶尖的i期刊之一,每年他们大概会收到来自全国各地数学家的数万次投稿。

但最终有机会得到刊载的论文的,却只有不到两百篇。

并且,这两百篇学术论文当中,有几乎五分之四的份额被当世最顶尖的那几位数学家占据。

如代数几何领域的peter holze。

微分几何领域的ricon。

数学分析领域的jean bourgain 。

等等等等……

所以,审稿编辑在审稿的时候,并非按照投稿顺序进行审阅,而是按照署名作者的学术水批评作为标准。

毕竟,学术水平越高的著作者,达到期刊收录标准的可能性越高。而每期期刊的收录论文数量大体是上下浮动的一个数值,但浮动不大。

这样的话,便能大大节省审稿编辑的时间。

能在这样数学界顶尖的期刊担任审稿编辑,自身也并非籍籍无名之辈。

比如说,《inventioneae》的审稿编辑之一,拉菲-彼得尔,就是以为曾经获得过拉马努金奖的知名数学家。

目前,他除了是这家期刊的审稿编辑外,还担任加州大学洛杉矶分校的客座教授,主攻领域解析数论。

作为一位多名头衔加身的数学大牛,他不可能每天像上班似的朝九晚五的呆在办公室内审阅稿件。

一般来说,他都是每周抽出一个或者两个上午的时间,呆在自家的公寓里,审阅那些由普通审稿编辑发过来的,几篇顶尖数学家的投稿,和一些不太知名的数学家发来,但被他们认为有收录资质的投稿。

但多数情况下,由于普通审稿编辑自身数学水平不高的原因,那些选拔上来的邮件只有很少

状态提示: 第三百四十八章 彼得尔
第1页完,继续看下一页