笔趣阁书屋手机小说首页小说搜索

返回《万能数据》

笔趣阁书屋(00kshu.cc)

首页 >> 万能数据 () >> 第三百五十九章 我已经搞定了!
亲爱的书友,您现在访问的是转码页面,会导致更新不及时及无法正常下载,请访问真实地址:http://m.00kshu.cc/106910/

第三百五十九章 我已经搞定了!(1/2)

359章

魏院长笑吟吟的话语一出,程诺的神色不由变了变。

一篇论证逻辑错误的论文?

让自己在半小时之内找到其中存在的数学语言逻辑错误?

程诺皱着眉头思考,思考魏院长出的这个考验的难度。

不过,在没有通读整篇论文之前,他很难给出一个准确的定论。

究竟能不能完成,即便自信如他,都要打一个大大的问号!

但,此刻,他没有“拒绝”这个选项!

面对着魏院长笑意盎然的面庞,程诺重重点头,“好,可以。”

魏院长眯眯眼,指着答辩教室后排的一个座位,“你先在那答题吧,我们继续面试其他答辩的学生。”

半个小时的时间,四个老师当然不可能在这干坐着等程诺作答完毕。

正好趁着这段时间,可以面试完一两位答辩毕业生。

魏院长倒也不担心程诺会借助手机在网上搜索资料。

这篇论文本就由他本人撰写,由于是费稿,根本没有再任何平台上发表过。

至于该论文中存在的那处逻辑错误,就更不可能通过非正常手段得知。

一切,都只能靠程诺自己。

这也算是对程诺数学水平的究极考验。

虽然说即便最后程诺没有成功完成作答,魏院长也不肯能不发给程诺毕业证,但是,程诺在他心中的分量绝对会大打折扣。

关于后续科研资源分配上,也会进行重新调整。

程诺拿着魏院长那篇厚厚的论文,来到答辩教室后排的一个座位上。

座位的抽屉洞里,有一摞的草稿纸和碳素笔之类的各种文具。

看来这是魏院长早有预谋啊!

程诺苦笑一下,这个套无论自己之前知不知道,都只能无奈的往里面跳啊!

论文总共34页,比程诺上交的论文少上几页。

论文题目和论文证题也和程诺一模一样,都是证明bertrand假设。

唯一区别的,是程诺所述的证明方法为一种正确合理可行的证明方案。

而魏院长的,则是一种错误的证明方案。

哈哈哈!

这样想的话,确实是好受多了!

程诺心头那被魏院长算计的阴霾一扫而空。

他活动活动手指,揉了揉之前一直维持微笑导致有些发僵的脸蛋,低下头,开始浏览起魏院长的论文。

聚精会神的他,一点点将论文中的内容嚼碎。

就连前面四位老师和答辩毕业生交流,他都没有察觉。

虽然魏院长的此篇论文和程诺的毕业论文选择的证题相同,但具体的证明步骤却是千差万别。

程诺和上世纪伟大的数学家切尔雪夫在证明bertrand假设时,都是采用引理代入推导的方法。

但在魏院长的这篇论文中,他却另辟蹊径,采取了一种截然不同的证明思路。

euler乘积公式引入法!

程诺暂且用这么名字命名。

在论文中,魏院长从证明过程的一开始,就引入euler乘积公式这个概念,随后通过euler乘积公式和bertrand假设的数学逻辑关系,进行命题推导。

何谓euler乘积公式?

这是数学家日耳曼提出的关于复数分布的起点之一,具体内容为:对任意复数s,若res1,则:Σnn-snp1-p-s-1。

这是一个相当冷门的数学公式,在现在数学学术研究中几乎很难用到。

没想到,魏院长会突发奇想,用它作为证明bertrand假设的另一切入点,果然不愧为曾经的华国数学界的大牛。只不过,结果似乎并不完美。

用了十多分钟的时间,程诺看完了整篇论文。

当然,这指的不是程诺读完了文件那完整34页的内容。

和程诺提交的毕业论文一样,真正算是真材实料的,只有那五六页的内容罢了。

读完之后,程诺对魏院长的证明思路也算是了解。

首先,他设fn为满足fn1fn2fn1n2,且Σnfn的函数n1、n2均为自然数,则可顺利推导出:Σnfnnp[1fpfp2fp3]。

得出上面那一串的推导定理后,算是完成了证明的第一步。

下面,由于Σnfn,因此1fpfp2fp3绝对收敛。考虑连乘积中pn的部分有限乘积………利用fn的乘积性质可得:npn[1fpfp2fp3]Σfn。

第三步,由于1fpfp2fp31fpfp2fp3[1-fp]-1……

第四步,……

…………

最后一步,由2n!n!n!np2n3psp。将连乘分解为p2n及2np2n3两部分……由此,得证bertrand假设成立。

一步接一步,逻辑严密。

思路清奇,但似乎却在常理之中。

读完第一遍,程诺并未找出论文中存在的任何瑕疵。

程诺眉头轻皱一下。

果然,事情没有那么简单。

程诺没有时间再去通读检查一遍,他先是排除了论文中逻辑推导简单的部分,直接忽略不看。

如果那个逻辑错误真的出现在那种低级的逻辑推导步骤上,魏院长根本不可能还将其当做程诺的论文答辩题目。

因为,那样太丢人。

论文中存在庞大运算量和缜密推导步骤的地方一共五处。

程诺逐一排查。

“第一处,euler乘积公式右端求和和普通有限积的推理,首先,将等式右端所有含有因子2的fn项都消去,然后……”

“第二处,素数的分布以及二步精确,……”

…………

“第四处,fn的性质的代入,f2Σnfnf2f4f6”

状态提示: 第三百五十九章 我已经搞定了!
第1页完,继续看下一页