第480章 国产化涡扇9!(2/2)
为对应的国产型号,复州轴承集团会负责轴承本身的生产,但是对我们来说,需要在总装之前提前把轴承和整个支撑结构整合到一起,成为同一个主轴连接组件。”这个已经属于设计改进的范畴,其实是由606所负责完成。
只不过那边的设计师今天去开评审会了,所以抽不开身。
所以不过为了便于说明情况,他特地打印了一份图纸带过来。
“这样的话,要想把轴承拆下来可就……就得把整个发动机全部拆开才行。”
杨庆毕竟经验丰富而且对斯贝比较了解,最先看出了其中的端倪:
“不过……倒确实可以减少大概100-120个零部件,还有25公斤左右重量。”
应该说,斯贝k202确实不是一种非常先进的发动机。
尤其对于这条时间线上,已经顺利落地定型涡喷14的华夏来说。
它唯一的优点或许在于油耗很低,但那是以中等涵道比为代价换来的。
按照国标,这台推力110和al31f还重。
考虑到这个老式核心机哪怕压榨到极限,推力也很难突破10吨大关,因此要想提高国产化型号的性能,最好的办法就是抠一抠重量。
另外零件数减少也有利于降低故障率。
所以这是第四代发动机的技术趋势之一。
例如ej200发动机的零组件数就只有老前辈rb199的65左右。
代价是一旦出故障可能会很难修。
“这是我们用最新技术研发的轴承,按照第三代发动机,也就是涡扇10的标准生产,预期寿命不短于发动机的首翻周期。”
林卫国轻轻敲了敲绘图板解释道,
“也就是说,正常情况下,只需要在大修过程中更换整个组件即可,无需地勤人员拆开维护或修理。”
“所以……我们的涡扇10,也会用到这种技术?”
另一个人开口问道。
所有人都知道,改进涡扇9只不过是顺手而为,这些高端技术最终肯定要落实在新型号上面。
“常总的目标是,把涡扇10的零组件数量控制在2200个以下,而现在的涡喷14是大约3150个。”
林卫国的回答言简意赅:
“我之前算了一下,这一轮测试如果顺利通过,那么涡扇9的国产化率大概能提高到92左右。”
毕竟主轴承和高压压气机全都实现国产化之后,基本就只剩下最后一块硬骨头,也就是涡轮了。
这部分要再等一段时间,用来验证国产第三代镍基单晶材料。
他把手中的笔放下,重新转过身,看向面前的一众同事:
“按照时间表,全国产化的涡扇9,大概能在明年年中投入整机测试!”
本章阅读结束,请阅读下一章